Indicações para um inibidor de PCSK9

Renato D. Lopes, MD MHS PhD Professor of Medicine Division of Cardiology Duke Clinical Research Institute Duke University Medical Center

Duke Clinical Research Institute

From Thought Leadership to Clinical Practice

Duke Clinical Research Institute

From Thought Leadership to Clinical Practice

1987 – 2017: 30 years since first statin approved

Depress tab and pull dosage card out DO NOT SEPARATE FROM PLASTIC SHELL

1987:

ACE-inhibitors shown to be beneficial in heart failure

The New England Journal of Medicine

Copyright, 1987, by the Massachusetts Medical Society

Volume 316

JUNE 4, 1987

Number 23

EFFECTS OF ENALAPRIL ON MORTALITY IN SEVERE CONGESTIVE HEART FAILURE

Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS)

THE CONSENSUS TRIAL STUDY GROUP*

How have we progressed?

Heart failure 1987-2017 Atherosclerosis 1987-2017

Angiotensin receptor blocker/neprilysin inhibitor

CRT Devices

Mineralocorticoid receptor antagonists

Beta blockers

1987: ACE inhibitors

Intensive statin therapy reduces risk after ACS --but residual risk remains high

MIRACL

PROVE-IT

Schwartz et al., JAMA 2001;285:1411; Cannon et al. N Engl J Med. 2004;350:1495.

Beyond statins: Failed approaches to reduce CV risk

- Fenofibrate
- Niacin
- Succinobucol
- Omega-3 FAs
- CETP inhibitors
 - torcetrapib
 - dalcetrapib
- Secretory PLA2 antagonist
 - Varespladib
- PPAR activators
 - Aleglitazar, rosiglitazone

ACCELERATE

Evacetrapib CETP inhibitor – CETP is an enzyme that mediates transfer of cholesterol between LDL and HDL lipoproteins

Genetic and animal data that support probable benefit

LDL from 84mg/dL to 54 mg/dL = 37% decrease HDL from 46mg/dL to 104 mg/dI = 130% increase

ZERO EFFECT ON OUTCOMES

Similarities between CETP and PCSK9

Both with genetic data to support efficacy

Both have significant effects on LDLc

Neither effect hsCRP

- Function: How does PCSK9 participate in regulation of LDL-C levels?
- **Experiments of nature:** Effects of PCSK9 mutations
- Experiments of man: What can we expect from forthcoming CV outcomes trials?

The PCSK9 time-line: Bench to bedside in record time!

Function of PCSK9

- promote degradation of LDL receptors (LDLR)
- reduce clearance of LDL from circulation

Effect of PCSK9 inhibition

- increase LDLR density on hepatocytes
- promote clearance of LDL from circulation and reduce circulating LDL-C concentration

LDL Receptor Function and Life Cycle without PCSK9

Do, et al. Curr Cardiol Rep 2013;15:345-56

LDL Receptor Function and Life Cycle with PCSK9

Do, et al: Curr Cardiol Rep 2013;15:345-56

Impact of PCSK9 inhibitor

Do, et al. Curr Cardiol Rep 2013;15:345-56

Genetic validation of PCSK9 target

Loss of function PCSK9 mutations:

Lifelong reduced exposure to LDL-C

- Bogalusa Heart Study
- Followed from age ~9 to ~30 yrs of age
- Mutations had 1-2% prevalence and were associated with ~15%↓ LDL-C

PCSK9 loss of function mutation affects LDL-C and CHD risk in blacks (ARIC study)

Gain of function mutations in PCSK9

• A rare cause of familial hypercholesterolemia

PCSK9 therapeutics

Approaches to target (inhibit) PCSK9

Monoclonal antibodies – Phase III-IV

Name	Description	Developed by
Bocozicumab	Humanized	Pfizer
Evolocumab	Fully human	Amgen
Alirocumab	Fully human	Sanofi/Regeneron

- Small interfering RNA Phase II (Medicines Company)
 - Potential administration every 3-6 months
- Other approaches -- Preclinical/Phase I
 - Adnectins
 - Small molecule inhibitors
 - PCSK9 vaccine

Potential clinical application of PCSK9 inhibitors

- 1. In patients who fail to reach LDL-C targets with statin
- 2. In patients who are statin intolerant
- 3. In patients with high Lp(a)
- 4. In patients with established coronary heart disease, to reduce CV risk on top of best statin treatment

PCSK9 antibody in patients not at LDL-C goal on intensive statin

PCSK9 antibody in statin-intolerant patients

Stroes E, et al., J Am Coll Cardiol 2014;63:2541-8

Effect of PCSK9 antibody on Lp(a)

Raal FJ, et al., J Am Coll Cardiol 2014;63:1278-88

CV outcomes trials with PCSK9 antibodies

FOURIER - Evolocumab	SPIRE I / II - Bococizumab		ODYSSEY OUTCOMES-Alirocumab			
Population under study						
Secondary prevention: Established CV disease (MI, stroke, PAD)	Primary/secondary prevention: High CV risk		High risk secondary prevention: Recent ACS (within 4-52 weeks)			
Lipid criteria at entry (mg/dL)						
LDL-C ≥ 1.8 or non-HDL-C ≥ 2.6 mmol/L	SPIRE I: 1.8 < LDL-C < 2.6 or 2.6< non-HDL-C < 3.4	SPIRE II: LDL-C ≥ 2.6 or non-HDL-C ≥ 3.4	LDL-C ≥ 1.8 or non-HDL-C ≥ 2.6			
Statin dose regimen						
atorvastatin 20-80 mg (or equivalent statin); 69% high intensity treatment)	Not specified		Atorvastatin 40-80 mg, rosuvastatin 20-40 mg, or maximum tolerated 89% on intensive treatment			
Sample size						
22,500	SPIRE I: 12,000	SPIRE 2: 6,300	18,000			
Primary Endpoint						
CV death, MI, stroke, unstable angina, coronary revascularization	CV death, MI, stroke, or unstable angina needing urgent revascularization		CHD death, MI, stroke, unstable angina			
Dosing regimen or doses						
140 mg Q2W or 420 mg QM	150 mg Q2W		75mg or 150mg Q2W			

FOURIER

<u>Further cardiovascular OU</u>tcomes <u>Research with PCSK9 Inhibition in</u> <u>subjects with Elevated Risk</u>

MS Sabatine, RP Giugliano, AC Keech, N Honarpour, SM Wasserman, PS Sever, and TR Pedersen, for the FOURIER Steering Committee & Investigators

American College of Cardiology – 66th Annual Scientific Session Late-Breaking Clinical Trial March 17, 2017

27,564 high-risk, stable patients with established CV disease (prior MI, prior stroke, or symptomatic PAD) Screening, Lipid Stabilization, and Placebo Run-in **High or moderate intensity statin therapy** (± ezetimibe) LDL-C ≥70 mg/dL or **non-HDL-C** ≥100 mg/dL RANDOMIZED **DOUBLE BLIND Evolocumab SC** Placebo SC 140 mg Q2W or 420 mg QM Q2W or QM Follow-up Q 12 weeks

LDL Cholesterol

Primary Endpoint

Brigham and Women's Hospital and Harvard Medical School

Brigham and Women's Hospital and Harvard Medical School

Types of CV Outcomes

Endpoint	Evolocumab (N=13,784)	Placebo (N=13,780)	HR (95% CI)
	3-yr Kaplan-Meier rate		
CV death, MI, or stroke	7.9	9.9	0.80 (0.73-0.88)
Cardiovascular death	2.5	2.4	1.05 (0.88-1.25)
Death due to acute MI	0.26	0.32	0.84 (0.49-1.42)
Death due to stroke	0.29	0.30	0.94 (0.58-1.54)
Other CV death	1.9	1.8	1.10 (0.90-1.35)
МІ	4.4	6.3	0.73 (0.65-0.82)
Stroke	2.2	2.6	0.79 (0.66-0.95)

Types of CV Outcomes

Endpoint	Evolocumab (N=13,784)	Placebo (N=13,780)	HR (95% CI)
	3-yr Kaplan-Meier rate		
CVD, MI, stroke, UA, or revasc	12.6	14.6	0.85 (0.79-0.92)
CV death, MI, or stroke	7.9	9.9	0.80 (0.73-0.88)
Cardiovascular death	2.5	2.4	1.05 (0.88-1.25)
МІ	4.4	6.3	0.73 (0.65-0.82)
Stroke	2.2	2.6	0.79 (0.66-0.95)
Hosp for unstable angina	2.2	2.3	0.99 (0.82-1.18)
Coronary revasc	7.0	9.2	0.78 (0.71-0.86)
Urgent	3.7	5.4	0.73 (0.64-0.83)
Elective	3.9	4.6	0.83 (0.73-0.95)
Death from any cause	4.8	4.3	1.04 (0.91-1.19)

Key Subgroups

Lower LDL-C Is Better

Achieved LDL Cholesterol (mg/dl)

Landmark Analysis

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

- \downarrow LDL-C by 59%
 - Consistent throughout duration of trial
 - Median achieved LDL-C of 30 mg/dl (IQR 19-46 mg/dl)
- \downarrow CV outcomes in patients already on statin therapy
 - 15% \downarrow broad primary endpoint; 20% \downarrow CV death, MI, or stroke
 - Consistent benefit, incl. in those on high-intensity statin, low LDL-C
 - 25% reduction in CV death, MI, or stroke after 1st year
 - Long-term benefits consistent w/ statins per mmol/L \downarrow LDL-C
- Safe and well-tolerated
 - Similar rates of AEs, incl DM & neurocog events w/ EvoMab & pbo
 - Rates of EvoMab discontinuation low and no greater than pbo
 - No neutralizing antibodies developed

In patients with known cardiovascular disease:

- PCSK9 inhibition with evolocumab significantly & safely ↓ major cardiovascular events when added to statin therapy
- 2. Benefit was achieved with lowering LDL cholesterol well below current targets

Alirocumab ODYSSEY-Outcomes Study Design

from last patient randomized

Japan: indication for alirocumab July 2016

Praluent is indicated for the treatment of patients with FH or hypercholesterolemia who have high cardiovascular risk with LDL cholesterol not adequately controlled by HMG-CoA reductase inhibitors.

Precautions:

(1) Patients should undergo careful medical examinations, including tests confirming FH or non-FH before using Praluent.

(2) In patients with non-FH, the use of Praluent should be considered for patients with high cardiovascular risk based on confirmed risk factors (e.g., coronary artery disease, non-cardiogenic cerebral infarction, peripheral arterial disease, diabetes mellitus, chronic kidney disease, etc.)

Health Canada indication for evolocumab: Sept 2015

Evolocumab is indicated as an adjunct to diet and maximally tolerated statin therapy in adults with heterozygous familial hypercholesterolemia or clinical atherosclerotic cardiovascular disease who require additional lowering of LDL-C.

The effect of evolocumab on cardiovascular morbidity and mortality has not been determined.

Brasil: indicação para alirocumab Agosto 2016

Alirocumab está indicado para:

- adultos com hipercolesterolemia primária (familiar heterozigótica e não familiar) ou dislipidemia mista, como adjuvante à dieta
- pacientes incapazes de atingir os níveis alvos predefinidos da lipoproteína de baixa densidade (LDL-C) com o máximo de dose de estatina tolerada, em combinação à estatina ou à estatina associada a outras terapias hipolipemiantes
- pacientes intolerantes a estatina, seja como monoterapia ou em associação a outra terapia hipolipemiante

Brasil: indicação para evolocumabe Abril 2016

Evolocumabe está indicado para adultos com hipercolesterolemia primária ou dislipidemia mista, como adjuvante à dieta:

- em combinação à estatina ou à estatina mais outras terapias hipolipemiantes em pacientes incapazes de atingir os níveis da lipoproteína de baixa densidade (LDL-C) com o máximo de dose de estatina tolerada
- isoladamente ou em combinação a outras terapias hipolipemiantes em pacientes que são intolerantes à estatina ou para aqueles cujo tratamento com estatina é contraindicado

"Humanity's greatest advances are not in its discoveries – but in how those discoveries are applied..."

Duke Clinical Research Institute

From Thought Leadership to Clinical Practice

Harvard 2007